
Iverson exam 2013 3

question 1: scheduling

A prereq is a task that must be performed before a particular other task. A schedule is an
ordering of all tasks so that so that all prereqs are satisfied.

Example: Before you do your homework, you have to tidy your room and walk the dog. Before
you tidy your room, you have to eat lunch. Before you walk the dog, you have to feed the dog.
We can represent these prereqs like this:

tidy < homework

walkdog < homework

lunch < tidy

feeddog < walkdog

Here is a schedule for these prereqs:
lunch < feeddog < tidy < walkdog < homework

(a) [1 marks] Give another schedule for the above set of prereqs.
Any of these: FLWTH FWLTH FLTWH LFWTH LTFWH

(b) [1 marks] Give a schedule that satisfies these prereqs, or explain why there is none.

run < supper

lunch < text

study < supper

email < supper

text < email

lunch < run

LRTES LTRES LTERS ... plus study anywhere before supper

(c) [2 marks] Give a schedule that satisfies these prereqs, or explain why there is none.
run < supper

lunch < text

study < supper

supper < email

email < text

text < run

there is none: run < supper < email < text < run

[6 marks] (d) Write code that takes as input a list of prereqs and returns either a schedule or
the message that there is no schedule.

this algorithm is known as topological sorting. here is a python program.
data structure: list of sublists (task, followed by that task’s prepreqs)
to topsort, repeatedly remove task with no prereqs, and update List
import sys

def taskIndex(L,t): #return index of task; append if not in list
for j in range(len(L)):
if t==L[j][0]:
return j # continue if no return ...

Iverson exam 2013 4

L.append([t])
return len(L)-1

def newPrereq(L,s,t): #add s<t to list L of prereqs
j = taskIndex(L,s) #ensures s is in L
k = taskIndex(L,t) #ensures t is in L, and gets index
L[k].append(s)

def hasNoPrereqs(L,j): #if the only item in the sublist is the task
return 1==len(L[j])

def noPrereqsIndex(L): #largest index of task with no prereqs
x = -1
for j in range(len(L)):
if hasNoPrereqs(L,j):
x = j

return x # if still -1 then all tasks have prereqs

def removeTask(L,j): # remove task with index j
task = L.pop(j)[0] # task is first item in sublist L[j]
for item in L: # remove task wherever it appears as prereq
for t in range(len(item)):
if task==item[t]:
item.pop(t)

def inputPrereqs(L):
for line in sys.stdin:
tuple = line.replace(’\n’,’’).split(’ ’)
newPrereq(L,tuple[0],tuple[2])

def outputSchedule(L):
S = []
okSoFar = True
while okSoFar and len(L)>0:
x = noPrereqsIndex(L)
if x<0:
okSoFar = False

else:
S.append(L[x][0])
removeTask(L,x)

if okSoFar:
for j in range(len(S)-1):
print S[j], ’<’,

print S[len(S)-1]
else:
print ’no schedule exists’

L = []
inputPrereqs(L)
outputSchedule(L)

Iverson exam 2013 5

question 2: permutations

A permutation of a string of characters is an arrangement of the characters in some order. For
example, the permutations of string abca are aabc aacb abac abca acab acba baac baca

bcaa caab caba cbaa . Here, the permutations are sorted in lexicographic (dictionary) order.

a) [1 marks] How many permutations are there of iverson?

7! = 7*6*5*4*3*2*1 = 5040

b) [1 marks] How many permutations are there of baseballs?

If the symbols were all different, the answer would be 9!, but the 2
a’s are the same, the 2 b’s are the same, the 2 s’s are the same, and
the 2 l’s are the same, so the answer is 9!/(2!*2!*2!*2!) = 22680 .

c) [3 marks] Write code that takes as input a string of lowercase alphabetic characters and
returns the number of permutations.

1. count letter frequencies, say f_1 f_2 ... f_t

2. n!/(f_1! * f_2! ... * f_t!)

Iverson exam 2013 6

d) [2 marks] How many permutations of baseballs start with a?

8!/(2!*2!*2!) = 7! = 5040

e) [3 marks] For the string baseballs, find the 1982nd permutation (in lexicographic order).
Show your work.

perms 1 .. 630 aa....... 7!/(2!*2!*2!) = 630

perms 631 .. 1890 ab....... 7!/(2!*2!) = 1260

perms 1891 .. 1980 aea...... 6!/(2!*2!*2!) = 90

perm 1981 aebabllss

perm 1982 aebablsls

here’s some python code to check my answer, and the output

fun problem: write the code for next_permutation()

list = ’b a s e b a l l s’.split() # list of characters

list.sort()

count = 1

increments = [0, 630, 1260, 90, 1]

for j in increments:

for _ in range(j):

next_permutation(list)

count += 1

print "".join(list), count

aabbellss 1

ababellss 631

aeabbllss 1891

aebabllss 1981

aebablsls 1982

Iverson exam 2013 7

question 3: ciphers

8 a b c d e f g h i j k l m n o p q r s t u v w x y z
1 b c d e f g h i j k l m n o p q r s t u v w x y z a
3 c d e f g h i j k l m n o p q r s t u v w x y z a b
4 d e f g h i j k l m n o p q r s t u v w x y z a b c

12 e f g h i j k l m n o p q r s t u v w x y z a b c d
2 f g h i j k l m n o p q r s t u v w x y z a b c d e
2 g h i j k l m n o p q r s t u v w x y z a b c d e f
6 h i j k l m n o p q r s t u v w x y z a b c d e f g
7 i j k l m n o p q r s t u v w x y z a b c d e f g h
0 j k l m n o p q r s t u v w x y z a b c d e f g h i
1 k l m n o p q r s t u v w x y z a b c d e f g h i j
4 l m n o p q r s t u v w x y z a b c d e f g h i j k
2 m n o p q r s t u v w x y z a b c d e f g h i j k l
7 n o p q r s t u v w x y z a b c d e f g h i j k l m
8 o p q r s t u v w x y z a b c d e f g h i j k l m n
2 p q r s t u v w x y z a b c d e f g h i j k l m n o
0 q r s t u v w x y z a b c d e f g h i j k l m n o p
6 r s t u v w x y z a b c d e f g h i j k l m n o p q
6 s t u v w x y z a b c d e f g h i j k l m n o p q r
9 t u v w x y z a b c d e f g h i j k l m n o p q r s
3 u v w x y z a b c d e f g h i j k l m n o p q r s t
1 v w x y z a b c d e f g h i j k l m n o p q r s t u
2 w x y z a b c d e f g h i j k l m n o p q r s t u v
0 x y z a b c d e f g h i j k l m n o p q r s t u v w
2 y z a b c d e f g h i j k l m n o p q r s t u v w x
0 z a b c d e f g h i j k l m n o p q r s t u v w x y

You might find the above column and array useful in this question. The column on the left
gives percentage frequency of English letters, e.g. 8%, 1%, 3% for a, b, c.

A cipher takes as input a message, called the plaintext, and possibly also a key, and returns
as output the encrypted message, called the ciphertext. The Caesar-shift cipher has no key: it
shifts each plaintext letter forward 3 positions (with the last 3 letters of the alphabet shifted by
wrapping around to the start of the alphabet).

Example: Caesar-shift of plaintext iverson wxyz is ciphertext lyhuvrq zabc.

More generally, for any integer k, the k-shift cipher shifts each plaintext character k positions
forward (if necessary, wrap around to the start of the alphabet). Here, k is the key.

Example: 4-shift of plaintext iverson wxyz is ciphertext mzivwsr abcd.
Example: 30-shift of iverson wxyz is mzivwsr abcd.

(a) [2 marks] Caesar-shift wacky zebra exit zdfnb cheud halw

25-shift wacky zebra exit vzbjx ydaqz dwhs

The polyshift cipher works like this. Pick a keyword, say crazy. Pick a plaintext, say too

soon old, too late smart. Create the key by repeating the keyword so that it is as long as
the plaintext: cra zycr azy, cra zycr azycr. Now use each key letter as the shift for the

Iverson exam 2013 8

corresponding plaintext character, where a is 0, b is 1, . . . , z is 25. So the shift sequence is 2-17-
0 25-24-2-17 0-25-24 2-17-0 25-24-2-17 0-25-24-2-17, and the ciphertext is vfo rmqe okb vfo

kyvv slytk. Another example: polyshift elephant with keyword baby is ciphertext flfniaor.

(b) [2 marks] polyshift iverson exam with keyword crazy kmeqqqe ewyo

(c) [2 marks] To crack a cipher is to find the plaintext from the ciphertext without knowing
the key. Crack this shift cipher (English plaintext, spaces omitted). Explain your method.

method: try every shift, there are only 25 . . . shift is m

ciphertext: ufezqhqdfaaxmfq

plaintext: itsnevertoolate

(d) [4 marks] Crack this polyshift cipher (English plaintext, keyword length 3). Explain your
method. Hint: consider letter frequencies in the substring composed of positions 1,4,7,. . . , and
then for positions 2,5,8,. . . , and then for positions 3,6,9,. . . .

ciphertext: pvtgirjvjgjq gmc uccrk bgvnnp

below are the letter frequencies of the 3 substrings. each substring has only 1
character which appears more than once. it turns out that this corresponds to the
most frequent English character, e. so shifting respectively g,v,c back to e undoes
the cipher. keyword is cry.

a b c d e f g h i j k l m n o p q r s t u v w x y z

0 0 0 0 0 0 4 0 0 1 0 0 0 1 0 1 0 1 0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0 1 1 1 0 1 0 0 1 0 0 0 0 0 3 0 0 0 0

0 1 2 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0

plaintext: nevertheless eve slept deeply

Iverson exam 2013 9

question 4: sigma game

Alice and Bob play a game called sigma. The input is a list of numbers. Alice goes first. They
alternate turns. On a turn, a player takes (and removes) either the first number or last number
from the list. The game ends when all numbers are gone. A player’s score is the sum of the
numbers they took. The player with the greater score wins.

Example: list [2 5 1 4]. Alice takes 4, leaving [2 5 1]. Bob takes 2, leaving [5 1]. Alice
takes 5, leaving [1]. Bob takes 1. Alice scores 4+5=9. Bob scores 2+1=3. Alice wins.

A player is sane if she maximizes the minimum score that she is guaranteed against all possible
opponent strategies.

Example: [5 1]. If Alice is sane then she takes 5 and scores 5 (otherwise she takes 1 and
scores 1).

Example: [1 2 4]. If Alice is sane then she takes 4.
The value of a list is, for the game with that list, the score of the first player minus the score

of the second player, assuming that each player is sane.

Examples: value of [5] is 5-0=5; value of [5 1] is 5-1=4; value of [1 2 4] is 5-2=3.

(a) [2 marks] Give the value of each list:

[1 5 2] value -2

[1 5 2 4] value 6

[3 1 5 2] value 5

[3 1 5 2 4] value -1

(b) [2 marks] Bob says that a best strategy is to always take the larger available number, or
either one if they are equal. Alice says Bob is wrong. Who is correct? Justify your answer.

Alice is correct. For [1 1 100 2], Alice’s scores -98 if she takes 2,
but 98 if she takes 1.

Iverson exam 2013 10

(c) [3 marks] The value of a list can be computed from the values of its sublists. Fill in the
empty cells of the array, which give sublist values of [1 4 5 2 3 3 5 1]. The entry in row x
and column y is the value of the sublist from position x to position y. E.g., the entry in the
second row and fourth column is the value of sublist [4 5 2], namely 1.

1 3 2 0 3 0 5 4

4 1 1 2 1 4 -3

5 3 4 3 2 7

2 1 2 3 -2

3 0 5 4

3 2 -1

5 4

1

(d) [3 marks] Write code that takes as input a list and returns the list’s value.

def score(L): # compute the value of list L

n = len(L) # list L has n numbers, indexed 0..n-1

for j in range(n): # j runs from 0 to n-1

Value[j][j] = L[j]

for gap in range(1,n): #gap runs from 1 to n-1

for x in range(n-gap): #x runs from 0 to (n-gap)-1

y = x+gap

Value[x][y] = max(L[x] - Value[x+1][y], L[y] - Value[x][y-1])

return Value[0][n-1]

