Crop-improving fungus named after U of A
University recognized after contributions to Brazilian project

FLORENCE LOYIE
Journal Staff Writer
EDMONTON

A newly discovered fungus in Brazil that helps plants grow in dry soil has been named after the University of Alberta for its help with the research.

The fungus, known as Complexipora albertae, spreads under the soil and feeds additional moisture and nutrients to the roots of nearby plants, said Ricardo Berbara, a professor of agronomy at the University of Rio Janeiro, who named the fungus after the U of A.

Berbara said he named the fungus after the university because the U of A recently celebrated its centennial and “they have been very helpful with our project, both financially and otherwise.”

The discovery is particularly important in a huge, impoverished and uncharacteristically dry area of Brazil, where researchers hope to put the fungus to work as an agricultural tool to increase food production. The area is classified as dry tropical forest and is as vast as Canada’s three Prairie provinces.

The area is home to 30 million people who survive on a near-subsistence level of agriculture, said Berbara, who was in Alberta this weekend making a presentation at a science conference in Banff.

“When we think of the tropics, we always think of it as humid and rainy. But we have huge areas of dry land, and this fungus is really well adapted to this extreme environment. We expect this fungus to be very helpful in supporting crop development.”

The university has been helping researchers in Brazil’s tropical dry forest since 2005. Earth and atmospheric sciences researcher Arturo Sanchez-Azofeifa directs a remote-sensing environmental research program in the area.

Berbara and Sanchez-Azofeifa hope the plant-friendly nature of the fungus will help produce more plants such as cassava, a tuber that is a staple in the diet for the millions living in the area.

Researchers will also determine if other closely related species of the fungus might help aid the growth of other plants in a wide range of extreme climates, and help feed people in other impoverished areas of the world.

A framed photograph of Complexipora albertae will be presented today to Lorne Babiuk, the U of A’s vice-president of research, by a member of the Brazilian research team.

LOYE@THEJOURNAL.CANWEST.COM